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Taking account of changes in the velocity and concentration fields due to the 
presence of other particles, a qualitative analysis is given of the mass trans- 
fer of a concentrated ordered system of reacting solid particles at high Pecl~t 
numbers. 

The structure of singular streamlines starting and terminating at particle surfaces [i- 
4] plays an essential role in problems on convective diffusion to a system of particles at 
high Pecl~t numbers. It hence turns out that particle chains exist in a flow in which the 
internal mass transfer is strongly retarded by the interaction between the diffusion wakes 
and the boundary layers of the particle belonging to the chain. The problem of diffusion 
to a sufficiently sparse system of spheres arranged at the nodes of a cubic array was con- 
sidered in [5]. 

A qualitative analysis is given below of the mass transfer of a concentrated ordered sys- 
tem of reacting solid particles at high Pecl~t numbers. Taking account of changes in the 
velocity and concentration fields due to the presence of other particles, the mean diffusion 
flux is determined on the particle surfaces. The constant of �9 the effective volume reaction 
is calculated, and its dependence on the concentration and distance along the flow is found. 

The qualitative investigation of the system mass transfer is executed as a function of 
the Reynolds number. It is shown that at low Reynolds numbers (in the absence of a developed 
attached vortex behind the particles) the mean diffusion flux can be considerably less than 
that calculated from the results in [6, 7], where the flow field near the particle surface 
is determined within the framework of the nuclear model [8-10], and the change in the concen- 
tration field due to the presence of other particles is neglected. 

i. Let us consider stationary convective diffusion in a laminar viscous incompressible 
fluid flow being filtered through a system of spheres of equal radius a arranged at the sites 
of a regular array formed by the regular duplication of the fundamental cell. For simplicity 
we consider the fundamental cell to have the shape of a parallelepiped and to be given by 
three vectors aliei, leil = i, i = i, 2, 3 and that the mean velocity of the filtration 
stream is parallel to the vector e~ and equal to U in the spacings between the spheres. We 
select the origin in a corner of the fundamental cell, hence the radius-vector of any parti- 
cle will be determined by the relationship 

r : a ~ k i l i e  i, k i.--= 0, 1 ,2  . . . . .  Nl ( i =  | , 2 , 3 ) .  
i = !  

L e t  u s  a s s u m e  t h a t  t h e  f l o w  f i e l d  i n  t h e  a r r a y  i s  p e r i o d i c  ( q u a s i p e r i o d i c )  and g i v e n  by  
t h e  f l o w  i n  t h e  f u n d a m e n t a l  c e l l .  

As an  i l l u s t r a t i o n ,  l e t  u s  c o n s i d e r  t h e  S t o k e s  f l o w  a r o u n d  p a r t i c l e s  i n  w h i c h  t h e i r  mu- 
t u a l  i n f l u e n c e  on  e a c h o t h e r  i s  t a k e n  i n t o  a c c o u n t ,  p a r t i c u l a r l y  by  t h e  f o l l o w i n g  two a p p r o x i -  
ma te  m e t h o d s .  

The  n u c l e a r  mode l  [ 8 - 1 0 ]  c o n s i d e r s  t h e  f l o w  a r o u n d  a s p h e r e  o f  r a d i u s  a s u r r o u n d e d  by  
a c e r t a i n  c o n c e n t r i c  s h e l l  o f  f l u i d  w i t h  o u t e r  r a d i u s  b .  L e t  us a s s u m e  t h a t  t h e  f l u i d  on  
t h e  o u t e r  s u r f a c e  b o u n d i n g  t h e  l i q u i d  s p h e r e  d o e s  n o t  s p r e a d  t o  t h e  a d j a c e n t  d o m a i n s  w h e r e  
o t h e r s  o f  t h e  same s p h e r e s  a r e  f o u n d  a n d  t h e  a d h e s i o n  c o n d i t i o n  i s  s a t i s f i e d  on t h e  p a r t i c - l e  
s u r f a c e .  The  b o u n d a r y  c o n d i t i o n s  o n  t h e  c e l l  s u r f a c e  a r e  p o s e d  d i f f e r e n t l y  i n  d i f f e r e n t  
m o d e l s .  F o r  i n s t a n c e ,  i t  i s  c o n s i d e r e d  t h a t  t h e r e  a r e  no v o r t i c e s  [8]  o r  t a n g e n t i a l  s t r e s s e s  
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[9, i0] on the cell boundary. In the case of a regular array (in the plane case) the models 
of [8-10] have been studied experimentally [ii] and theoretically [12]. It has been shown 
that the model in [8] describes the flow field near the particle surface well. 

Another method is suitable for Ii I << 1 and is based on introducing the density of the 
force acting from the sphere onto the fluid and given in the form of a series with constant 
coefficients containing the delta-function and its derivatives at the center of the spheres 
[5, 13]. This approach permits finding that combination of partial periodic solutions that 
vanishes on the sphere surfaces. 

The dimensionless stream function near the sphere surfaces in these models can be repre- 
sented in the form 

= 3/4(1 -+- T ) ~ -  1)' sin'0, (1)  

where the stream function is written in a spherical coordinate system coupled to the center 
of the sphere, the angle 8 is measured from the free stream direction, and the sphere radius 
a and the velocity U are taken as the characteristic scales. The constant T depends on the 
volume concentration of the spheres in the array and can, in particular, be determined from 
[5, 8-10, 13]. 

The distribution of the concentration c in the stream is determined by the solution of 
the stationary convective diffusion equation 

"(vv)c = Pe-tAc, Pe - -  aUD -t (2)  

w i t h  c o n s t a n c y  o f  t h e  c o n c e n t r a t i o n  f a r  f r o m  t h e  a r r a y  and  t o t a l  a b s o r p t i o n  o f  t h e  s u b s t a n c e  
d i s s o l v e d  i n  t h e  s t r e a m  on t h e  s p h e r e  s u r f a c e s ,  a s  b o u n d a r y  c o n d i t i o n .  The P e c l 4 t  number  Pe 
is henceforth considered high. 

The hydrodynamic model of the flow [8-10] was used in [6, 7], where the self-similar 
solution of the diffusion boundary layer [14] was used to compute the diffusion influx to the 
sphere. Such an approach takes account of the change in the concentration field produced 
by other reacting particles in the stream. In particular, such an approach does not take 
into account the depletion of the solution because of the reaction at the particles arranged 
in the array in the stream, and corresponds to one active reacting sphere in a system of 
passive (nonreacting) spheres. In conformity with the experimental results [15, 16], such 
a calculation procedure for moderate Reynolds numbers (Re~10) can result in a severalfold 
exaggeration of the mean flow at the particles. The individual (at each sphere) and mean 
total diffusion fluxes on a sphere obtained by such a method will agree: 

1 (3~)5'3F-~(-~-)(l+T)'/3, (3) l ( k ) =  ( I >  = APe' /3 = I , ,  A = ~ -  

N, N, N, 

<I> = [NtN2N,]-' ~ ~ y_~ I (k), k = t k , ,  k 2, k3}. 
k,=l k,=l ks=l 

In order to take account of the change in the concentration field due to the absorption 
of other particles, it is necessary to consider the particle diffusion wakes whose presence 
results in the fact that the leakage condition for the concentration of dissolved substance 
in the free stream for each particle will depend on its relative location in the array and 
is found from the solution of the problem of diffusion to particles located upstream [1-4]. 

Under the assumption of no closed circulation domains, the diffusion wake behind a solid 
sphere is investigated in [17-19] (by the method of mergeable asymptotic expansions in the 
high Pecl~t number), where it was shown that it consists, in turn, of four characteristic 
subdomains W(i) (i = i, 2, 3, 4). 

The concentration in the convective-boundary layer domain W(x) remains constant on the 
streamlines and is determined by the concentration at the exit from the diffusion boundary 
layer. The orders of the dimensionless length 6x and width Ax of this domain are given by 
the inequalities 0(Pe-~) < 6x < 0(Pe~3). 0(Pe -I~) < AI < 0(P e~) and the concentration 
c(~) has the order of one. 

The inner domain of the diffusion wake W(2) is characterized by the fact that the tan- 
gential transfer of substance along the surface plays an essential part therein while the 
radial transfer is inessential. The fluid flow in W(2) is considerably depleted and the con- 
centration is c(~) = 0(Pe - -~) and grows proportionately to the square root of the distance 
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to the particle surface on the stream axis. The characteristic dimensions of this domain 
are O(Pe -~3) < 62 < O(Pe~3), A2 < O(Pe-~). 

Both the tangential and radial transfer of substance to the surface must be taken into 
account in the domain of the rear stagnation point W(3). The characteristic dimensions of 

�9 . _i 3 < 1/3 �9 . . = thxs domain are 63 < O(Pe / ), As O(Pe- ), and the strea m xs depleted maxlmally wlth c(3) 
0 (pe- i / 3 ) . 

In the mixing domain of the diffusion wake W(4) (the characteristic dimensions are 64 > 
O(Pel/3), A4 < O(Pe-~3)), the radial substance transfer is inessential and the concentration 
is c(~) = O(1). 

Such a diffusion wake is destroyed when a closed circulation domain is formed behind 
the particles. A new diffusion wake W. with a simpler structure consisting of two subdo- 
mains, the domain of the rear critical~line W (3) and the mixing domain W (~ [3], is formed 
on the common boundary between the attached vortex and the outer flow for finite dimensions 
of this domain. Both the radial and tangential substance transfers along the particle sur- 
face are essential in the domain W~3), while the radial transfer can be neglected in W (a). 
The concentrations in these domains are on the order of c. (3) ~ Pe -I]5, c (a)~ i, and th* char- 
acteristic dimensions are determined by the inequalities ~3 < O(Pe -~),~A3 < O(Pe-1]~); 
O(Pe -I/~) < 64 < O(Pe-~), A~ < O(Pe -~3). �9 

The diffusion wakes of particles located upstream deplete the solution of the fluid ar- 
riving next in the diffusion boundary layer, which can result in an abrupt reduction in the 
total diffusion flux in this fluid as compared to that which is calculated by using the self- 
similar solution [14]. 

Let us consider a compact array for which the condition l~ ~< Pe ~3 is satisfied. 

Using the results in [1-4], we obtain the total diffusion flux per particle with number 
k analogously to the formulas obtained for the chain of spheres with period Z << Pe ~s located 
on the stream axis: 

/ (k) = / . [k ,2 /3 - - (k , - -  t)~73l, k = {k,, ~2. h~}. (4)  
where I, is the total diffusion flux per sphere determined by means of the self-similar solu- 
tion [14]. In particular, it is determined by (3) in the models of [5, 8-10, 13]. 

It is seen from (4) that the total diffusion flux per sphere diminishes with the in- 
crease in the ordinal number k~, and tends to zero in inverse proportion to the one-third 
root of k: for large numbers. This indicates that the diffusion wakes exert considerable in- 
fluence on the mass transfer of a fixed particlewith the medium in the case under considera- 
tion. 

2. The n~an diffusion flux per sphere is determined by the formula 

< I > = I ,  N F  1/3" (5) 

I t  i s  s e e n  t h a t  t h e  mean  d i f f u s i o n  f l u x  c a l c u l a t e d  t a k i n g  a c c o u n t  o f  i n t e r a c t i o n  b e t w e e n  
the diffusion wakes and the particle boundary layer is always less than that calculated by 
means of (3), where this interaction is neglected. As the number of particles in the array 
increases, the mean flux per sphere tends to zero. 

As Re,molds number increases, (5) remains valid until there are no closed circulation 
domains behind the particles. The diffusion wake starts to be reconstructed with their appear- 
ance, and this influence is exerted in distances on the order of Pe-~ [3] for finite dimen- 
sions of this domain. Hence, if the array period l~ is considerably greater than this quan- 
tity, the influence of the diffusion wakes ceases to be felt by the particle mass transfer 
and the mean value for the diffusion flux agrees (in the main approximation in the character- 
istic diffusion parameter) with the individual flux per particle. This can be a qualitative 
explanation of the fact that the results of [6, 7] agree fairly well with the experimental 
results for sufficiently large Reynolds numbers [15, 16]. 

For the case when the dimensions of the closed circulation domain are less than or com- 
mensurate with Pe-~, the mean diffusion flux per particle of the array can be represented in 
the form [2] 

< I > ----l, Nt -~'(R~' P), 0 ~ ? ( R e ,  p).~<l/3, (6)  

where l,(Re, p) is the total diffusion flux per individual particle of the array calculated 
without taking account of the change in the concentration field in the stream due to the 
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presence of the other spheres. The specific value of y hence depends on the Reynolds number 
Re, the volume concentration of the particles P, and the geometry of their mutual arrange- 
ment, and can be determined from experimental results. 

For Re~ let a closed circulation domain first occur behind the spheres and for Re2 let 
the dimensions of the attached vortex considerably exceed Pe-~P. The values of Rel and Re= 
depend on the volume concentration of the spheres in the array. There are different experi- 
mental data (see [16, 20, 21], for example) for Rel for a very low concentration (a single 
sphere). As an illustration we use the result in [22], obtained by the method of merged 
asymptotic expansions in a small Reynolds number for the viscous flow around a single sphere. 
The two-term expansion in the Reynolds number for the vortex boundary agrees well with the 
data in [21] to Re = 60 [23]. The distance between the sphere surface and the vortex bound- 
ary along the stream axis is hence determined by the formula 

== 0.25 ( ~ 1  q- 3Re - - 5 ) .  

I t  i s  s e e n  t h a t  Rex = 8 .  S i n c e  Pe = R e S t ,  t h e n  P e - ~  v a r i e s  s l o w l y  w i t h  t h e  i n c r e a s e  
i n  t h e  R e y n o l d s  number ,  whe re  Sc i s  t h e  Schmid t  number ,  and  f o r  o r d i n a r y  f l u i d s  Sc ~ 106.  
Assuming  10 < Re2 < 30 ,  we o b t a i n  0 . i 3 1  < Pe - ~  < 0 . 1 3 5 .  Hence  b y  c o n s i d e r i n g  X = 4Pc -y~ 
the selection criterion for Rei, we obtain Re2 = 17. 

Using the linear approximation, we obtain the following approximate dependence 

1 , Re < Re1, 
37 = (Ret--Re) (Rei--Re~ -1, Rei ~ Re ~ R e z ,  (7) 

0 , R e z <  Re 

f o r  t h e  i n d e x  y = y ( R e ,  0) (6)  i n  t h e  who le  r a n g e  o f  s t a t i o n a r y  l a m i n a r  f l o w  a r o u n d  a s p h e r e .  

E x p r e s s i o n s  (6)  and  (7)  t a k e  a c c o u n t  o f  b o t h  t h e  change  i n  t h e  v e l o c i t y  f i e l d  and t h e  
c o n c e n t r a t i o n  due t o  t h e  p r e s e n c e  o f  o t h e r  p a r t i c l e s  i n  t he  s t r e a m ,  and y i e l d  q u a l i t a t i v e  
a g r e e m e n t  w i t h  e x p e r i m e n t a l  r e s u l t s .  They show t h a t  f o r  m o d e r a t e  R e y n o l d s  numbers  t h e  mean 
d i f f u s i o n  f l u x  p e r  a r r a y  p a r t i c l e  can  be c o n s i d e r a b l y  l e s s  t h a n  t h e  i n d i v i d u a l  f l u x  c a l c u -  
l a t e d  w i t h o u t  t a k i n g  a c c o u n t  o f  t h e  d i f f u s i o n  i n t e r a c t i o n ,  and  f o r  s u f f i c i e n t l y  h igh  Reyno lds  
numbers agrees with that value. 

3. The results obtained permit determination of the mean values characterizing the 
chemical reaction rate observed in a disperse system with regular packing of the spherical 
particles. We still consider Re < Rel, i.e., there is no attached vortex in the neighborhood 
of the rear stagnation point. 

Let us assume that the mean concentration of the diffusing substance varies sufficiently 
slowly so that sufficiently many particles are contained at distances of the characteristic 
change therein. Let us introduce a representative volume sufficiently smaller than the scale 
of the change in concentration but containing a large quantity of particles. 

Taking into account that the mean concentration (the concentration outside the diffusion 
boundary layers and wakes of the particles is also later called the concentration in the flow 
core) does not vary in practice at distances on the order of the distance between particles, 
we obtain from (5) for the mean diffusion flux per individual particle (here and below dimen- 
sional quantities are used; the quantities a, D, and c are used as scales for the dimension- 

less diffusion flux) 

( I > = A(n)aOPe'/3n-l /gx- ' /%(x)  (c(O) --= co). (8) 

Here c = c(x) is the concentration in the flow core; x, coordinate along the stream, x = 0 
corresponds to the entrance to the layer, while the constant A is defined in (3); n, number 
of particles per unit volume. The relationship NI = xn ~3 is used in deriving (8). 

From (8) and the equation for the concentration (in the flow core) 

- - U d c / d x = n (  l > ;  x = O ,  c---co (9) 

we obtain the distribution of the concentration along the stream in the flow core 

c ---- coexp ( - -  Fx2/3), F = 3/2A (n) a4/3U-2/3D2/3nS/% (10)  

Hence we obtain for the distribution of the mean diffusion flux in a dispersed system 

< I > = Co N (n) a4/3U 1/3D~/3n-I/~ exp ( - -  Fx2/3). (1 t ) 
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The results obtained above for the mean flux also permit calculation of the effective 
volume reaction rate constant in a dispersed system. The reaction is of first order, and 
is due to the progress of the surface reactions at the particles. From (9) and (ii) we ob- 
tain an expression for the effective volume reaction rate constant 

k = k (x) = A (n) a4/3U 1/302/3nStgx-I/3. (12) 

Let us note that the rate constant depends substantially on the particle concentration 
and decreases rapidly along the flow. This distinguishes it considerably from the rate con- 
stant calculated without taking account of the diffusion interaction; in this case the rate 
constant is constant. 

Therefore, the diffusion interaction of particles in a dispersed system with regular 
packing of the particles results in a change of the effective volume reaction rate constant 
for high Pecl~t numbers. 

Results (8)-(12) can easily be extended to the case when there is a stationary attached 
vortex behind each sphere, i.e., Rel ~_Re~Re2. In particular, for the effective volume 
reaction rate constant 

k = A(n)a4/3Ui/3O2/3ns/9+~x-~. 

It is seen that in this case the reaction rate constant decreases more slowly with dis- 
tance along the stream. 

NOTATION 

a, sphere radius; el, directional vector of the fundamental cell; li, length of the 
parallelepiped edge; U, mean stream velocity; v, stream velocity, ~, stream function; r, ~, 
spherical coordinate system connected to a sphere; c, concentration; D, coefficient of dif- 
fusion; Pe = aU/D, Pecl~t number; Re, Reynolds number; l(k), total diffusion flux at the k- 
th sphere; <I>, mean diffusion flux; w(i)(i = i, 2, 3, 4), diffusion wake domains; ~, dis- 
tance from a sphere surface to the vortex boundary along the stream axis; n, number of spheres 
per unit volume; x, coordinate along the stream. 
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STATIONARY TRANSFER IN FIBROUS COMPOSITE MATERIALS 

Yu. A. Buevich and V. G. Markov UDC 536.2.022 

The effective heat-conduction coefficients are calculated for fibrous materials 
of different structure. 

The general methods of investigating transfer processes in heterogeneous systems de- 
veloped in [i, 2] in application to dispersed media with spherical particles can be used suc- 
cessfully also in describing these processes in materials of a different structure. Sta- 
tionary transfer in fibrous materials, which is used extensively in engineering and being of 
considerable applied interest, is examined below in the example of the heat-conduction pro- 

cess. 

In the general case, materials consisting of a continuous medium and fibers with differ- 
ent physical properties distributed therein are not isotropic, where the nature and degree 
of the anisotropy are determined by the fiber packing features. Taking into account that 
the mean heat flux q and the mean temperature gradient �9 are real vectors, we see that the 
quantity A must be considered a real tensor of the second rank in the linear relationship 

q = _ART, (1) 

replacing the Fourier law in the case under consideration. The effective heat-conduction 
coefficients can comprise a nonglobal tensor in other dispersed media also, e.g., in media 
with spheroidal particles having a preferred direction of orientation of their axes of sym- 
metry [3]. Equation (i) can be obtained strictly by taking the average of the local Fourier 
relationships, which are valid within and outside the fibers in either small physical volume 
(in this case the linear scale of the quantities q and T should considerably exceed the in- 
ternal structural scale of the material) as was done in [i], or in the ensemble of admissible 
fiber configurations analogous in meaning to the ensemble of configurations of systems of 
rigid spheres studied in [2]. 

Let us investigate a material with extended parallel fibers first. The cross section 
of each fiber is a circle of radius a; the centers of such circles are arranged randomly 
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